
A Simple Synchronous Distributed-Memory Algorithm for the HPCC
RandomAccess Benchmark

Steven J. Plimpton, Ron Brightwell, Courtenay Vaughan, Keith Underwood
Sandia National Laboratories∗

Mike Davis
Cray Inc.

Abstract

The RandomAccess benchmark as defined by the High
Performance Computing Challenge (HPCC) tests the speed
at which a machine can update the elements of a table
spread across global system memory, as measured in bil-
lions (giga) of updates per second (GUPS). The parallel im-
plementation provided by HPCC typically performs poorly
on distributed-memory machines, due to updates requir-
ing numerous small point-to-point messages between pro-
cessors. We present an alternative algorithm which treats
the collection of P processors as a hypercube, aggregating
data so that larger messages are sent, and routing individ-
ual datums through dimensions of the hypercube to their
destination processor. The algorithm’s computation (the
GUP count) scales linearly with P while its communication
overhead scales aslog2(P), thus enabling better perfor-
mance on large numbers of processors. The new algorithm
achieves a GUPS rate of 19.98 on 8192 processors of San-
dia’s Red Storm machine, compared to 1.02 for the HPCC-
provided algorithm on 10350 processors. We also illustrate
how GUPS performance varies with the benchmark’s spec-
ification of its “look-ahead” parameter. As expected, paral-
lel performance degrades for small look-ahead values, and
improves dramatically for large values.

1. Introduction

The High Performance Computing Challenge bench-
mark suite is designed to test machine performance on
a variety of small codes representative of kernel com-
putations in scientific applications. The 7 benchmarks
are described in [3, 8] and performance data for a va-
riety of machines are given at the HPCC WWW site

∗Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of En-
ergy’s National Nuclear Security Administration under contract DE-AC04-
94AL85000.

http://icl.cs.utk.edu/hpcc/index.html. RandomAccess is a
test of a machine’s ability to access and update global mem-
ory. It defines a table (i.e. a vector) of 64-bit datums that
fills roughly half the total memory of the machine and re-
quires the table entries be updated in a random order. An
update consists of generating a random location in the table
and performing a bit-wise XOR of a 64-bit random quantity
with the datum stored at that location. On a parallel ma-
chine, processors can perform updates simultaneously, but
the locations generated by a single processor will be scat-
tered throughout the global table. On a distributed-memory
message-passing machine, this implies the generating pro-
cessor must communicate with the processor owning a spe-
cific table location in order to complete the update. Because
the update computation is cheap, the latency cost of send-
ing a small message to the owning processor dominates,
and parallel performance is poor. Table 1 lists the giga-
updates-per-second (GUPS) performance of a Cray XT3 on
the standard RandomAccess code (unoptimized category)
provided with the HPCC benchmark suite. These runs were
performed on the Red Storm machine at Sandia National
Labs which consists of 10368 2.0 GHz AMD Opteron pro-
cessors configured as a 3d mesh, with a torus in the Z di-
mension. The custom Cray interconnect and associated sys-
tem software provide an application-level message-passing
performance of 1.1 GB/s bandwidth per direction with an
aggregate 2.2 GB/s bidirectional bandwidth and 7µsec la-
tency (MPI sends and receives).

The single processor performance (0.0147 GUPS) is lim-
ited by the memory bandwidth the Opteron processor can
sustain for the update operation while accessing table loca-
tions spread randomly throughout local memory (half of 2
GB in this case). The parallel performance of the baseline
benchmark is poor on all message-passing systems. In fact,
Red Storm’s 1.02 GUPS on 10350 processors is the fastest
rate for any machine listed at the HPCC WWW site (unopti-
mized category), despite the fact that it represents a parallel
efficiency of less than 1%.

These results have motivated ourselves and others to

1

Processors 1 16 64 1024 5000 8192 10350
GUPS 0.0147 0.0105 0.0634 0.195 0.536 0.797 1.018

Table 1. Performance of the unoptimized RandomAccess benchmark on a Cray XT3 machine in giga-updates-per-
second (GUPS) for varying processor counts.

devise new algorithms that are better tuned for message-
passing environments and for specific machines. The
benchmark allows for such optimizations, provided they ad-
here to the benchmark rules. In the optimized category, the
current performance leader (as of May 2006) is the IBM
BG/L machine which achieved 35.5 GUPS on 128K proces-
sors (as compared to an unoptimized category performance
of 0.454 GUPS on 2048 processors and 0.0657 GUPS on
64K processors). The second-place machine was a Cray
X1E machine with a GUPS rate of 7.69 on 1008 processors.
Unlike BG/L and Red Storm, the X1E has native hardware
support for remote loads and stores that gives it an inherent
advantage for small, remote transactions.

In the next section, we describe an alternative algorithm
for the RandomAccess benchmark that is motivated by the
style of collective communication popular a decade or more
ago for parallel architectures with processors connected in
a hypercube topology. As we explain, within the rules of
the benchmark, a collective “all2all” operation can be used
with appropriate data filtering and aggregration. The all2all
routines provided with standard MPI do not allow for data
filtering at the lowest level, and typically do not route mes-
sages in the hypercube manner we advocate as optimal for
this benchmark. Instead, we have implemented an all2all
that is similar to thecrystal router algorithm described in
[4], as a means of routing data through the dimensions of a
hypercube.

Performance and additional communication optimiza-
tions for the RandomAccess algorithm we propose are high-
lighted in subsequent sections. Performance with a variable
“look-ahead” parameter as defined by the benchmark is also
discussed.

2. Algorithm

The serial RandomAccess benchmark is simple to ex-
plain. Assuming an N-length table of 64-bit quantities has
been allocated and initialized, M updates are performed as
follows, in C-like notation:

loop 1 to M:
ran = (ran << 1) ˆ (ran < 0 ? 7 : 0)
index = ran ˆ mask
table[index] ˆ= ran

The first line of the loop generates a randomized quantity
(ran) by operating on a primitive polynomial (x63 + x2 +
x + 1) over GF(2), the Galois Field of order 2. The second
line uses low-order bits in ran as the index of a location in
the table. The final line updates the table entry via an XOR
operation. Note that all operations are fast bitwise logical
operations. The length of the table N (a power-of-two), the
iteration count M, the initial table values, the initial random
number (ran), and the mask definition are all specified by
the benchmark. N is chosen so that the table fills roughly
half the processor’s memory.

For parallel machines, N is chosen so that the table fills
half the aggregate memory of all P processors. Each pro-
cessor stores an N/P length portion of the global table. The
stream of M random values can also be partitioned, so that
each processor generates M/P table indices. For large P al-
most all such indices will be for table locations stored on
other processors. On distributed-memory message-passing
machines, this requires a message to be sent from the pro-
cessor that generated the index to the processor owning the
table location. The message content is the 64-bit ran value
which the receiving processor can use to compute a local
table index and perform the update.

The parallel algorithm for RandomAccess provided in
the HPCC benchmark suite adds asynchronous MPI com-
munication calls to the serial loop described above. Genera-
tion of an off-processor index results in an MPIIsend of the
ran quantity to that processor. These quantities are buffered
to avoid sending tiny messages. Incoming messages are
polled for via MPITest/MPIRecv and processed as they
arrive. This algorithm has the advantage of asynchronic-
ity so that processors can do useful work while waiting for
data. It can also be implemented on machines that support
one-sided communication (i.e. via UPC). However, on tra-
ditional message-passing machines, the algorithm requires
many small messages and latency costs dominate (see Table
1).

The definition of the benchmark allows each processor to
generate and store a small number of indices before the cor-
responding updates must be performed. This “look-ahead”
parameter, Q, is limited to 1024 values. This motivates a
synchronous parallel algorithm, executed by each proces-
sor:

loop 1 to M/P/Q:
generate Q datums (ran values)

Q’ datums = all2all(Q datums)
perform Q’ updates on local table

The first and last lines of the loop perform on-processor
computations to generate and use Q (or Q’) random values
for updates, identical to the operations of the serial algo-
rithm. The second line performs a globally synchronous
“all2all” communication. Each processor has Q values to
send to other processors. Likewise, it will receive Q’ values
from other processors. On average, Q’ = Q, though ran-
domness will induce small variations.1 MPI provides an
MPI Alltoallv function, which is typically implemented by
each processor sending P-1 messages, one to every other
processor (if required). However, because Q is small, for
large P this will result in many small messages and be inef-
ficient.

Consider alternative methods of performing an all2all
operation, as diagrammed in Figure 1. If P processors are
viewed as a 1d list, the operation proceeds as described
above. In a single stage, each processor sends a message
to (potentially) every other processor. The green processor
sends data directly to the red processor. If the P proces-
sors are viewed logically as a 2d array, the operation can be
performed in 2 stages. Each processor first communicates
within its column, then within its row. To send a message
from the green processor to red, green first sends to the blue
processor and blue then sends to red. Note that this affords
a large savings in the number of messages each processor
sends. If P = 10000, then in 1d each processor sends 10000
messages to complete the all2all, but in 2d for a 100x100
logical array, each processor sends only 200 messages.

Similarly, for a 3d logical grid of processors, the all2all
operation can be completed in 3 stages, green to blue to
purple to red, with a further reduction in the number of mes-
sages. This was the key insight of IBM for their optimized
implementation of the RandomAccess benchmark for the
BG/L machine (35.5 GUPS) whose processors are intercon-
nected as a 3d torus [5, 6]. Their algorithm is asynchronous
(not an all2all), but individual datums are effectively routed
from one processor to another in a 3-stage process as dia-
grammed in Figure 1.

The asymptotic limit of Figure 1 is to view the proces-
sors as an n-dimensional hypercube (P = 2n) and perform
the all2all inn = log2(P) stages. Thus any of the all2all
algorithms, including the hypercube limit, can be character-
ized by a dimensionalityd, ranging from 1 tolog2(P). If

1SinceQ′ > Q can occur, this may seem to violate the benchmark
rule that a processor cannot accumulate more than Q updates before pro-
cessing them. However, it does not violate the spirit of the benchmark
(personal communication with Bob Lucas, one of the HPCC organizers).
Alternatively the algorithm could simply discardQ′ − Q of the datums
whenQ′ > Q. In our tests, this is less than 1% of the total and is thus
allowed by the benchmark which states that up to 1% of the updates can
be “missed” (to allow for shared-memory collisions). We choose not to do
this, so this algorithm completes 100% of the generated updates.

we assume thedth root ofP is an integer, then all2all com-
munication cost for any of the variants is as follows. The
total volume,V , of data sent and received by each proces-
sor isdQ(d

√
P − 1)/ d

√
P . The number of messages,L, sent

(and received) by each processor isd(d
√

P − 1). Thus for a
traditional 1d all2all,V = Q(P −1)/P andL = P −1. By
contrast, in the hypercube limit, sincelog2(P)

√
P = 2, then

V = log2(P)Q/2 andL = log2(P). Thus, the number of
messages sent and received is reduced fromP − 1 in the
traditional 1d all2all tolog2(P). This is the chief advan-
tage of the hypercube-style all2all. The added cost is that V,
the total volume of data exchanged, increases by a factor of
log2(P)/2, since half the data Q must be sent and received
at each stage. Additionally, processors must scan the Q da-
tums at each stage to decide which to keep and which to
send to a partner processor; this incurs memory copy costs.
For this benchmark, because the aggregated message size is
still small (Q/2 = 4K bytes), the savings from fewer mes-
sages far outweighs these costs, particularly as P increases,
as will be shown in the next section.

The hypercube RandomAccess algorithm is simple to
implement with standard MPI send/receive calls. Pseudo-
code executed on each of a power-of-two number of pro-
cessors is shown in Figure 2.

The log2(P) loop over hypercube dimensions replaces
the all2all line of the previous parallel algorithm. Each pro-
cessor (me) identifies its partner processor in thedth dimen-
sion and sets a mask value to select the bit that represents
that dimension in the processor sub-field of the 64-bit da-
tums. It then loops over the Q datums and splits them into 2
lists. Datums that are kept are those that belong to table lo-
cations in the same half of the hypercube that the processor
belongs to. Datums to be sent belong to processors in the
other half. The send-list is then sent to the partner processor
and the received list is appended to the keep-list. After loop-
ing over all dimensions the final list contains Q’ datums for
table locations owned by the processor; it can then perform
the updates.

For non-power-of-two processors, the algorithm is
slightly more complex. We use a recursive approach where
a partition initially contains all the processors, and is suc-
cessively halved until it has a single processor. Similar to
the power-of-two algorithm, at each stage, processors in the
partition split the list of datums into two sub-lists, a keep-
list for datums that correspond to table locations owned by
processors in the same half of the partition the processor be-
longs to, and a send-list for datums belonging to processors
in the other half. If the partition has an even number of pro-
cessors, each processor partners with one in the other half
and the send/receive exchange is performed as in the power-
of-two pseudo-code. For an odd-size partition, N processors
exchange their send-lists with N+1 processors in the follow-
ing manner. Each of the N processors in the smaller half

Figure 1. 1d, 2d, and 3d versions of an all2all communication operation. Each square (box) represents a processor.
The processors can be logically organized as a 1d list, 2d array, or 3d grid and communicate in stages within each
dimension to complete the all2all.

sends 2 messages and receives 2. Each of the N+1 proces-
sors in the larger half also sends and receives 2 messages ex-
cept for the first and last processor which each send/receive
a single message. For load-balancing purposes, the sizes
and destinations of these messages are set so that each pro-
cessor receives the same number of datums (on average) as
other processors in its half of the partition.

3. Results

Our implementation of the hypercube RandomAccess al-
gorithm was run on the Red Storm machine with the results
shown in Table 2. The first line lists the original (unop-
timized) GUPS rates. The second line lists rates for the
new algorithm. The one-processor timing shows a slight
improvement, because the new code was built with a differ-
ent compiler, optimization flags, and MPI library.

Note that the hypercube algorithm significantly improves
performance — even on small numbers of processors. The
non-power-of-two results do not scale quite as well as their
power-of-two neighbors, due to the extra messages required
in the hypercube-style communication, as described above.
For large P, the GUPS rate nearly doubles each time P is
doubled. This is in accord with the scaling properties of the
hypercube algorithm. WhenP2 = 2 ∗ P1 processors are
used the GUP count doubles (since it is linear in P), while
the additional communication overhead is an extra iteration
of the hypercube loop over dimensions. In other words, the
communication cost grows logarithmically in P; in this case
it increases by only a factor oflog2(P2)/ log2(P1), which

is nearly one for largeP1. Thus with this algorithm the only
limitation to a high GUPS rate is the number of processors a
machine has, assuming a very large machine still has suffi-
cient bisection bandwidth to perform exchanges of 4K-byte
messages between all pairs of processors at each dimension
of the hypercube loop.

The third line of Table 2 lists predicted GUPS rates us-
ing a model equation that reflects these two scaling factors,
namelyTP = T1 + TC log2(P). TP is the CPU time to
run on P processors and is the sum of two terms.T1 is the
time to run on a single processor which is solely due to on-
processor computation (the generation and update steps of
the pseudo-code listing). The second term represents the
logarithmic cost of the all2all communication.TC is the
time to exchange a 4K-byte message between a pair of pro-
cessors, and also includes the cost of scanning the Q datums
to copy them to send- and keep-lists. On Red Storm we use
values ofT1 = 56.9µsec (for 1024 updates), andTC = 33
µsec. The latter is consistent with MPI latency/bandwidth
costs for 4K-byte messages, measured in independent tests
on Red Storm, when data-copy costs are factored in. This
means the communication cost on 4 processors (2*TC) is
roughly the same as the computational cost (T1); hence a
4-processor run should be 50% efficient. The table shows
the model predictions are reasonably accurate across a wide
range of processor counts.

The model also indicates that the hypercube algorithm
could potentially be deployed on IBM’s BG/L to obtain re-
sults similar to those achieved by IBM with its 3d routing
algorithm. For example, using a 4x larger value ofT1 for

loop 1 to M/P/Q:
list = Q generated datums (ran values)
loop d = 0 to log2(P)-1:

partner = (1 << d) ˆ me
mask = set bit to select dth dimension of hypercube
if partner > me:

loop over Q datums in list:
if datum & mask: add datum to send-list
else: add datum to keep-list

else:
loop over Q datums in list:

if datum & mask: add datum to keep-list
else: add datum to send-list

Send send-list to partner
Receive list from partner and append to keep-list
list = keep-list

perform Q’ updates on local table using datums from list

Figure 2. Pseudo-code for the power-of-two version of the hypercube RandomAccess algorithm.

Processors 1 4 16 64 200 256 300 1024 4096 8192 10240
GUPS (unoptimized) 0.0147 — 0.0105 0.0634 — — — 0.195 — 0.797 —
GUPS (hypercube) 0.0180 0.0377 0.0930 0.273 0.567 0.858 0.739 2.81 9.25 17.24 19.72

GUPS (model) 0.0180 0.0333 0.0867 0.257 — 0.817 — 2.71 9.26 17.26 —
Parallel Efficiency (%) 100 52.4 32.3 23.7 15.8 18.6 13.7 15.2 12.5 11.7 10.7

Table 2. Performance of the hypercube RandomAccess algorithm on a Cray XT3 machine in giga-updates-per-second
(GUPS) for varying processor counts. Parallel efficiencies are computed from the single-processor hypercube rate.

a BG/L processor (slower computation) and a 5x largerTC

(slower communication and data copy), both of which are
(roughly) consistent with other measurements of BG/L vs
Red Storm performance, the model equation yields a GUPS
rate of 44 on a 128K-processor BG/L machine. Thus, even
though BG/L processors may be relatively slow at perform-
ing updates, using 128K processors allows for several more
doublings in performance (in the large-P near-linear-scaling
regime of the algorithm) than any other current machine can
achieve. As noted above, one caveat to this approach on
BG/L (or any other machine) would be if limited bisection
bandwidth curtailed the scaling of the algorithm.

4. Additional Optimizations

The basic algorithm of the previous section can be op-
timized in various ways. Table 3 illustrates the effect of
several optimizations we tested for runs on up to 32 pro-
cessors of the Red Storm machine. All runs performed the
same number of updates per processor. The listed values
are CPU seconds. The timings show a decrease of roughly

20% on 32 processors (25.2 secs to 19.7 secs) which would
translate to a corresponding increase in GUPS rate.

The simplest optimization (Mod1) was to pre-post re-
ceives for alllog2(P) iterations before the all2all opera-
tion begins. Because Red Storm allows the application to
proceed while a message is being processed, this allowed
message arrivals to be overlapped with computation to help
compensate for load imbalance. This gave nearly an 8%
benefit for small processor counts. Mod2 achieved a mod-
est gain by moving all updates of local variables to after
the communication operations completed. Mod3 achieved
another modest gain by moving the MPIWait for the non-
blocking receives to as late as possible. This meant waiting
for the local list of the next iteration to be divided into two
sub-lists before determining if the data had arrived.

The next set of optimizations altered the underlying MPI
library. The default MPI on Red Storm is MPICH-2, but
a locally built MPICH-1.2.6 was available that has signif-
icantly lower overhead. Mod4 used MPICH-1.2.6; it pro-
vided a modest advantage. This local version of MPICH-
1.2.6 has a copy buffer on the send side for very short
messages so that the application buffer can be freed more

Processors Original Mod1 Mod2 Mod3 Mod4 Mod5 Mod6 Mod7
1 7.033 7.039 7.032 7.034 7.032 7.029 7.035 —
2 10.152 10.113 11.862 10.063 9.985 9.947 10.014 —
4 13.654 13.283 13.164 13.089 12.901 12.734 12.885 —
8 17.505 16.431 16.297 16.093 15.867 15.644 15.863 —
16 21.338 19.733 19.821 19.241 18.818 18.923 18.891 —
32 25.186 23.122 22.915 22.260 22.026 21.628 20.105 19.656

Table 3. Performance of optimizations of the hypercube RandomAccess algorithm as compared to the original version.
Values are in CPU seconds for a fixed number of total updates.

rapidly. In a highly synchronous code such as this, that
optimization is neither necessary or desirable. Turning it
off in Mod5 offered another modest speed-up. With this
change, it now made sense to double buffer the send-list
and keep-list and use nonblocking send operations (Mod7)
which provided a further 10% reduction. For completeness,
Mod6 is the nonblocking send optimization without turning
off the very short message optimization in the MPICH-1.2.6
library. The impact of the extra copy in the MPI library is
the delta between Mod6 and Mod7.

We only implemented these additional optimizations in
the simpler power-of-two version of the algorithm. On 8192
processors of Red Storm they boosted the GUPS perfor-
mance from 17.23 to 19.98 GUPS, which slightly bettered
the non-power-of-two result of 19.72 GUPS on 10240 pro-
cessors (see Table 2). We note that further optimizations
could be attempted by mapping the logical hypercube used
by the algorithm to the physical topology of the intercon-
nected processors (mesh, torus, tree, etc.), but we haven’t
implemented any such machine-specific optimizations.

A final issue we tested is the effect on GUPS rate of
changing the benchmark specification of its look-ahead pa-
rameter Q = 1024. Note that if Q were 1, a remote update
would have to be completed before a processor could gen-
erate its next index; this would be extremely challenging
for an MPI-style message-passing algorithm or machine to
perform well on. Conversely, if Q were huge, processors
could generate and store all their indices. Then a single
global communication operation could be performed (e.g.
an all2all) and processors could then process their entire set
of local updates. This subverts the purpose of the bench-
mark; 1024 was chosen by the HPCC organizers as a com-
promise value between these two extremes.

Table 4 lists GUPS rates for the hypercube algorithm
run on 32 processors of the Red Storm machine with vary-
ing Q values. The parallel efficiency is computed from the
1-processor Opteron GUPS rate of 0.0180; for these runs
a 32x larger rate would be 100% efficient. As expected,
GUPS rates and parallel efficiencies rise dramatically with
increasing Q and eventually asymptote when Q = 8K (mes-

sage size of 32K bytes) with a corresponding parallel effi-
ciency of 38.7%.

5. Final Thoughts

A synchronous algorithm for the RandomAccess bench-
mark has been presented which performs a hypercube-style
all-to-all communication operation that is efficient for the
message sizes and data structures specific to the bench-
mark. The algorithm exhibits linear scaling of its compu-
tation (GUP count) and logarithmic scaling of its commu-
nication overhead which leads to high GUPS rates on large
parallel machines. We believe this algorithm would per-
form well when running the RandomAccess benchmark on
any distributed-memory message-passing machine.

Implementations of this algorithm
in C are available for download from
www.cs.sandia.gov/∼sjplimp/download.html. This in-
cludes power-of-two and non-power-of-two versions, both
as stand-alone single files suitable for quick testing, and
also as modules that can be plugged into the official HPCC
testing framework.

Finally, we note that there have been numerous efforts
over the years to create efficient algorithms for collective
operations including all2all [1, 2, 7]. The routines or algo-
rithms from these packages might further boost the perfor-
mance of the RandomAccess algorithms we have presented
here, particularly for the non-power-of-two case, where our
implementation may be sub-optimal.

6. Acknowledgments

We thank Sue Kelly for supporting this work and Bruce
Hendrickson for helpful discussions. Both are staff mem-
bers at Sandia. We also thank a reviewer for pointing us to
the appropriate chapter of [4].

Q value 1 4 16 64 256 1024 2048 4096 8192 32768
GUPS (hypercube) 0.000627 0.00193 0.00704 0.0262 0.0803 0.158 0.189 0.210 0.223 —

Parallel Efficiency (%) 0.109 0.335 1.22 4.55 13.9 27.4 32.8 36.4 38.7 —

Table 4. Performance of the hypercube RandomAccess algorithm on 32 processors of a Cray XT3 machine in giga-
updates-per-second (GUPS) for varying “look-ahead” Q values. The allowed look-ahead has a large impact on par-
allel performance.

References

[1] M. Barnett, S. Gupta, D. Payne, L. Shuler, and R.
van de Geijn, “Building a High-Performance Collec-
tive Communication Library”, in Proceedings of Su-
percomputing ’94, 107–116 (1994).

[2] J. Bruck, C.-T. Ho, S. Kipnis, and D. Weathersby,
“Efficient Algorithms for All-to-All Communications
in Multi-Port Message-Passing Systems”, in Proceed-
ings of the 6th Annual ACM Symposium on Parallel
Algorithms and Architectures, Cape Cod, NJ, 1994.

[3] J. Dongarra and P. Luszczek, “Introduction to the HPC
Challenge Benchmark Suite”, ICL Technical Report,
ICL-UT-05-01, 2005.

[4] G. C. Fox, M. A. Johnson, G. A. Lyzenga, S. W. Otto,
J. K. Salmon, and D. W. Walker,Solving Problems on
Concurrent Processors: Volume 1, Chapter 22, Pren-
tice Hall, Englewood Cliffs, NJ, 1988.

[5] R. Garg and Y. Sabharwal, “Analysis and Opti-
mization of the HPCC RandomAccess Benchmark
on BlueGene/L Supercomputer: Extended Version”,
IBM Technical Report RI-05-010, 2006.

[6] R. Garg and Y. Sabharwal, “Optimizing the
HPCC Randomaccess Benchmark on Blue-
Gene/L Supercomputer”, in Proceedings of SIG-
Metrics/Performance ’06, Saint Malo, France, 2006.

[7] A. Knies, F. Barriuso, W. Harrod, and G. Adams
III”, “SLICC: A Low Latency Interface for Collective
Communications”, in Proceedings of Supercomputing
’94, 89–96 (1994).

[8] P. Luszczek, J. Dongarra, D. Koester, R. Raben-
seifner, R. Lucas, J. Kepner, J. McCalpin, D. Bailey,
and D. Takahashi, “Introduction to the HPC Chal-
lenge Benchmark Suite”, available fromhttp://
icl.cs.utk.edu/hpcc/pubs/index.html ,
March 2005.

